
1

Application manual for MP3 player for MSX cartridge

Developed in March 2007 by Dennis Koller www.pa4den.nl

and Jos van den Biggelaar

Fix developed 21-Apr-2017 by Eugeny Brychkov www.gr8bit.ru

(changes to documentation is highlighted dark blue, deleted text strikethrough)

ATMega firmware file is available at

http://www.gr8bit.ru/software/mp3-cartridge/

http://www.pa4den.nl/
http://www.gr8bit.ru/
http://www.gr8bit.ru/software/mp3-cartridge/

2

General overview

The MP3 cartridge contains an AtMega644 processor together with a VS1011 MP3

decoder. All registers of the decoder are shadowed by the AtMega and can be read by

the MSX without additional wait states. After the MSX reads a register from the

shadow memory, the AtMega reads the (new) contents of this register from the

VS1011. If the shadow would be updated continiously, VS1011 registers which have

auto incremented pointers will give unpredictable data. This update after read will

give one byte delay when using user code or reading memory from a VS1011E.

All these registers are as described in the VS1011 datasheet, expect for 6 additional

bits. These bits are not used by the VS1011 and are now used to switch between audio

chip, enable interrupts and audio buffer warning level.

&H21 Any write to this address will reset the cartridge

&H22 This is the data port for registers read/write and audio write

&H23 Mode port:

 7: When this bit it set in register mode, all written data is send to the

 register written in bits 0-4

 6: 1=Switch to register mode *

 0=Switch to audio mode *

 5: When set, auto increment is disabled when writing registers

 4-0: Address of register to access

&H24 I2C Status, for reading back I2C errors, wait for finishing of last action

&H25 I2C Data, used for writing slave addresses and data

&H26 I2C Own address, not used in this application

&H27 I2C Control, for generating start/stop conditions
* Always read out the busy flag after an update to &H23

The I2C part is a completely separated part of the cartridge, this will be described in

detail later on. There are two analog audio chips which both have their own audio

registers, and of course the I2C controller itself which is directly controlled by the I/O

addresses has registers as well.

To prevent any confusion, the AtMega (and VS1011) registers will be called ‘MP3

registers’. The audio chip registers ‘Audio registers’ and the I2C controller ‘I2C

registers’.

Up to chapter ‘Audio settings and AUX input’ the document only describes the MP3

registers, IO &H22 and &H23.

3

MP3 Register description

4

SetAUX When set, audio settings written by I2C will affect the AUX input.

INTEnable When set, an interrupt will be generated when buffer level is reached.

SNew SDI bus. Audio data and register data are send trough the same bus.

SShare SDI bus. One chip select is used.

SDat SDI bus. When set, data should be LSB first

SClk SDI bus. When this bit is set, data is read at falling edge.

 The SDI and SCI settings are affecting communication between

 AtMega and VS1011. Changing these bits will make further

 communication impossible.

Stream Set for stream mode, playback speed is adjusted depending on buffer.

 It is not supported by the AtMega.

TEST When set, some test functions of the VS1011 can be executed

StopWAV Set this bit to terminate playback of a wav file.

Reset Setting this bit will reset the VS1011 player.

InvLeft When set, audio of left channel is inverted (180deg phase shifted).

Buffer In these 4 bits the buffer warning level is specified.

StVer (Read only) VS1011 device version.

StPD2 Power down VS1011 output, can be used to avoid transient at reset.

StPD1 Power down VS1011 analog.

StVOL Ouput 0=0dB, 1=-6dB, 3=-12dB. This is not meant for volume.

 St bits are meant for power down, not useful for MSX.

BassEnh Bass enhancement, active when BassFrq>0.

BassFrq Lowest frequency the audio system can reproduce.

ClkD Clock doubler. When set, the crystal frequency is doubled.

ClkFreq Crystal/2000 &H1800 by default.

 For pitch bending the formula 100*&H1800 / Pitch can be used.

Playtime Setting the playtime to 0 should be done by writing 0 two times.

SmpFrq Current samplefrequency, can be changed while playing.

Chans The number of channels used. 0=Mono, 1=Stereo.

RAMData Data for VS1011 RAM,, written to address specified in RAMAddress

RAMAddress VS1011 RAM address pointer for data write.

MP3*** HDAT is the MP3 package header, found by the decoder, read only.

UserSA Activate or deactivate user code by writing its start address or 0 here.

VolLeft Volume left channel, this value times -0.5dB attenuation.

VolRight Volume right channel, this value times -0.5dB attenuation.

 It is recommended to adjust volume by the I2C audio chips instead.

UserCtrl* These 4 registers are settings and feedback for the uploaded user code.

The highlighted bits can be useful for MSX applications.

5

MP3 packages

MP3 files are divided into packages, a package is recognized by the 11 ones at the

beginning. For more detailed information, refer to ISO11172-3.

MP3Header All set to one.

MP3ID 00 – MPEG Version 2.5 (unofficial)

01 – reserved

10 – MPEG Version 2 (ISO/IEC 13818-3)

11 – MPEG Version 1 (ISO/IEC 11172-3)

MP3Lay 00 – reserved

01 – Layer III

10 – Layer II

11 – Layer I

MP3Prot When set, the file is protected by CRC

MP3BRate

Bits
Version1

Lay1

Version1

Lay2

Version1

Lay3

Version2

Lay1

Version2

 Lay2 & Lay3

0000 Free free free free Free

0001 32 32 32 32 8

0010 64 48 40 48 16

0011 96 56 48 56 24

0100 128 64 56 64 32

0101 160 80 64 80 40

0110 192 96 80 96 48

0111 224 112 96 112 56

1000 256 128 112 128 64

1001 288 160 128 144 80

1010 320 192 160 160 96

1011 352 224 192 176 112

1100 384 256 224 192 128

1101 416 320 256 224 144

1110 448 384 320 256 160

1111 Bad bad bad bad Bad

MP3SRate
bits MPEG1 MPEG2 MPEG2.5

00 44100 22050 11025

01 48000 24000 12000

10 32000 16000 8000

11 reserv. reserv. reserv.

MP3Pad When set, the frame is padded

MP3Priv Free to use bit for MP3 encoders

MP3Mode 00 – Stereo

01 – Joint stereo (Stereo)

10 – Dual channel (2 mono channels)

11 – Single channel (Mono)

MP3Ext In joint-stereo mode, these bits indicate the real stereo subbands.

MP3CRgt When set, the file is copyrighted.

MP3Copy When set, the file is the original.

MP3Emph 00 – No emphasis

 01 – 50/15 microseconds emphasis

 10 – Reserved

 11 – CCITT J17

6

Initialization

After power up the AtMega processor enters a bootloader program which gives the

possibility of flashing the main program. The bootloader part is protected at

production to prevent the boot part to be damaged.

For normal operation, first write a zero to &H22… or any value different from

&HAA. In this case the AtMega will execute the normal program.

Accessing the cartridge

Data is sent and read through port &H22, to distinguish between data and MP3

registers access to &H23 is used.

After a write action to &H23, the programmer should wait a while before sending

new data. In case of changing register read pointer the wait time will be around 300us

roughly. When updating registers with data send to &H22 previously, the wait time

can be up to 8 milliseconds. The AtMega is not allowed to send MP3 register data in

between audio data.

7

Writing MP3 registers

Writing only register 3:

 LD A,&H40 ;Go to register mode

 OUT (&H23),A

 CALL ATWAIT

 OUT (&H22),A ;High byte

 OUT (&H22),A ;Low byte

 LD A,&HC3 ;Update registers, offset is register 3

 OUT (&H23),A

 CALL ATWAIT ;This wait can be milliseconds

ATWAIT: IN A,(&H23)

 AND A,16

 JR NZ,ATWAIT

 RET

Writing 9 registers, starting from 0:

 LD A,&H40 ;Go to register mode

 OUT (&H23),A

 CALL ATWAIT

 LD HL,REGTAB

 LD BC,&H1222 ;9 registers = 18 bytes

 OTIR

 LD A,&HC0 ;Update registers, offset is register 0

 OUT (&H23),A

 CALL ATWAIT ;This wait can be milliseconds

ATWAIT: IN A,(&H23)

 AND A,16

 JR NZ,ATWAIT

 RET

8

Reading MP3 registers

Reading register 4:

 LD A,&H04 ;Can stay in audio mode, only update pointer

 OUT (&H23),A

 CALL ATWAIT

 IN A,(&H22) ;High byte

 …

 IN A,(&H22) ;Low byte

Reading 16 registers, starting from 0:

 LD A,&H03 ;Can stay in audio mode, only update pointer

 OUT (&H23),A

 CALL ATWAIT

 LD HL,REGTAB

 LD BC,&H2022 ;16 registers = 32 bytes

 INIR

9

Sending audio data

Audio data is sent as raw MP3 of WAV data.

While playing audio, the buffer level will decrease, and the cartridge sets bit 7 of

status register at IO &H23 when the audio buffer reaches its minimum level

programmed by bits 8-11 of MP3 register 1. This bit will be cleared when the audio

buffer is filled again to an amount of the minimum level plus 512 bytes.

It is possible to let the cartridge generate an interrupt by setting bit 14 of MP3 register

0, this interrupt will be generated once until the hardware detects an interrupt

acknowledge from the Z80, or after a write to &H22. The interrupt service routine can

recognize the interrupt also by checking bit 7 of status register at IO &H23.

When the minimum buffer level at bits 8-11 of register 1 is set to 0, the warning bit is

never set. When set to 1, the warning bit will be set when the buffer level is smaller

than 256 bytes and reset when the buffer level is higher than 768.

The total buffer size is 3584 bytes. To choose the right buffer warning level, two

values are important. The first one is the number of bytes that will be send each time

and the second is the period between two transfers.

One clear rule is the buffer may not be overfilled because data will be lost. So when

sending 1024 bytes each time, the highest possible buffer warning level will be 3584-

1024=2560 bytes. When the warning level is set to a higher value e.g. 2816 and 1024

bytes will be sent when bit 7 of &H23 is set, the buffer will overflow, 2816+1024 is

more than the buffer size.

Second, if the time between transmitting data is high, the buffer warning should also

be high. The exact time of the interval allowed depends on the bitrate.

In general, a higher warning level gives more safety. If the MSX for some reason

needs more time between two transmissions, there is enough data left in the buffer to

continue playing. It is recommended to send packages with a fixed time interval to

achieve a known time shift between currently sent package and actual played part of

the sound.

The cartridge always starts playing the audio data immediately after receiving the first

complete MP3 package.

Update by EB: I removed 512 byte margin to reset bit 7 of status register, new

firmware sets this bit if data size in ATmega buffer is less than threshold, and resets

when it is equal or more. The fix and change is related to (a) keeping bit 7 as current

as possible, and (2) prevent situations when VS1011 deactivates its DREQ line, thus

withholding ATmega’s buffer shift into its direction, and keeping status bit 7 stuck in

this 512 byte “slack” area. New firmware was tested using the SymbOS media player.

10

Status register

The information of currently read register, busy and data request can be checked by

reading back I/O &H23.

&H23 Mode port:

 7: When this bit it set, the programmed minimum buffer level is reached

 Note: This bit will be reset some milliseconds after filling the buffer,

don’t check again too fast.

 6: Not used, floating internally, might be 1 or 0

 5: Not used, floating internally, might be 1 or 0

 4: Busy. This should be checked after updating registers.

3-0: Address of register which data is available at I/O &H22 for reading

Update by EB: with new firmware application can read status bit immediately, and it

will be kept up-to-date according to data size in ATmega’s buffer.

11

Writing VS1011 memory

For uploading and controlling user code, access to memory is needed. Writing is

simply done by register 6 and 7. The first RAM address is written to register 7 and the

data to 6. See next chapter.

The implementation of the AtMega for writing memory is only passing on data. One

advantage, an amount of data smaller than 256 bytes meant for one register (&H06),

can be written to &H22 at one time. Then send &HE6 to I/O register &H23. to send

all data in one burst.

Reading VS1011 memory

For there is a difference between VS1011E and VS1011B devices. For VS1011E it is

always possible to read memory at any time, the VS1011B does not support reading

by default. The amplitude information of the spectrum analyzer requires memory

read. Therefore the spectrum analyzer code is slightly different for these versions, in

the VS1011B code the software creates a read possibility through register &H0F

while the VS1011E uses the default register &H06.

The AtMega will read out 64 bytes of the VS1011 memory, starting at the last address

written to register &H07. By default this should be part of the memory where the

spectrum analyzer data is available because this is the most common application, for

other future applications this value can be changed to another address.

12

VS1011 User code

The VS1011 has the possibility to execute small programs (plug-ins) written for a

VS_DSP core. There are a number of plugins available at www.vlsi.fi, also a

development kit with a C compiler is available. It is a small program which stays

available in the VS1011 memory until reset or powerdown.

After compiling several files are created, the .bin files are not just binary but do also

contain labels. A .cmd file can be used to upload to the VS1011. This is an example of

a .cmd file:

W 2 7 8050

W 2 6 2800

W 2 6 2f40

W 2 6 0000

W 2 6 0024

W 2 7 8052

W 2 6 3e12

W 2 6 b817

W 2 6 3e12

W 2 6 3815

…

…

W 2 6 6800

W 2 6 0024

W 2 A 0050

The 3
rd

 column is the MP3 register to write to, the last column the data, high byte

first.

Register 7 is the address in RAM to write to, register 6 is the data and will de auto

incremented by the VS1011. After uploading the code can be executed by writing the

start address to register 10. Writing a 0 to register 10 will disable to code execution.

After a hard reset or write to I/O &H21, the spectrum analyzer is uploaded to the

VS1011 by the AtMega as default user code.

To optimize the uploading (other) user code on MSX, after writing register 7 all data

for register 6 can be send to the cartridge in packages of 128 words. When sending the

‘update registers’, set bit 5 to disable auto increment of the AtMega. In this case all

data in the AtMega buffer will be sent to register 6 only.

Uploading the existing spectrum analyzer code by MSX, which has a size of 987

words, takes about 0.2 seconds in Z80 mode without this optimization.

http://www.vlsi.fi/

13

Spectrum analyzer

At the moment of developing the cartridge there are two plug-ins available. A

loudness and the spectrum analyzer. The loudness function works without any

exceptions. For the spectrum analyzer reading back of registers is required, when

using the VS1011B all spectrum data is available at register 15, this is covered by the

AtMega. Since this is the only plug-in with data feedback, the AtMega software is

tuned for this plug-in. The spectrum analyzer is automatically uploaded to the

VS1011 at start up, any other user code tools can be written by MSX and will simply

overwrite the spectrum analyzer.

To activate the spectrum analyzer, write its start address &H0050 to register &H0A.

When the plug in is active, the AtMega won’t read out register 10 to update it’s

shadow memory. It seems to disturb the VS1011. All spectrum data of the VS1011 is

read by the AtMega and stored in a different shadow memory behind the register

shadow as described in chapter ‘Read VS1011 memory’. Register 7 should be

&H1384, also the startup value, because this is the first address where the spectrum

data is available. The spectrum data can be read out by simply reading further than

register 15 using an INIR or separate IN instructions.

All odd bytes are peak values, even bytes are actual values, the first pair of bytes is

the lowest frequency and the last pair is the highest frequency. By default 14

frequency bands are selected, the mirror is updated every 20ms.

Reading 16 registers, starting from 0 including spectrum data:

 LD A,&H00 ;Can stay in audio mode, only update pointer (XOR A)

 OUT (&H23),A

 CALL ATWAIT

 LD HL,REGTAB

 LD BC,&H4022 ;16 registers = 32 bytes, 32 bytes of spectrum

 INIR

Reading only spectrum data, start at register 15 and read e.g. 28 bytes of spectrum:

 LD A,&H0F ;Can stay in audio mode, only update pointer (XOR A)

 OUT (&H23),A

 CALL ATWAIT

 LD HL,REGTAB

 LD BC,&H1E22 ;16 registers = 32 bytes, 32 bytes of spectrum

 INIR

14

Audio settings and AUX input

Audio settings can be adjusted by two TDA8425 devices, they are controlled through

a I2C controller PDA9564D. Audio settings are:

 Volume R*

 Volume L*

 Bass

 Treble

 Pseudo stereo

 Spatial stereo

 Forced mono / one channel
*Example code is included to create balance by software

The first audio chip is used for controlling the MP3 music, the second audio chip is

connected to an auxiliary input and is mixed with the MP3 audio. Since both

TDA8425 devices have the same I2C slave addresses, switching between the chips is

done by bit 15 of MP3 register 0. This is one of the unused VS1011 bits. When this

bit is set, the AUX audio chip is enabled.

Sending all settings for one audio chip using I2C takes 1.5ms for Z80 and 0.8ms in

R800 mode. Changing only one register of an audio chip will take 0.4ms for an

MSX2.

15

I2C

The IO addresses &H24 to &H27 controlled by the MSX are the I2C registers of the

PCA9564D. The audio chips are accessed through this controller, according to the

I2C protocol, a number of actions must be taken to change one single audio register.

Writing data over the two wire I2C bus is done by writing the data to I2C register

&H25, poll I2C register &H24 to check for errors or finishing data transfer. Initiating

and closing a data transmission is done via I2C register &H27.

TDAINI: LD A,&H44 ;After power-up initialize oscillator

 OUT (&H27),A ; communication is 88kHz

 LD B,0

WAIT: DJNZ WAIT

 LD A,&H64 ;Initiate start condition

 OUT (&H27),A ; For I2C, all communication starts with a start

 LD C,&H08 ; condition. The initiator (master) keeps SDA (Data)

 CALL STAT ; low, just before it keeps SCL (Clock) low.

 JP C,I2CERR ;Wait for code 8 in I2C status register

 ;In case of collisions or shorted lines, exit

 LD A,&H82 ;Load audio chip’s slave address in buffer

 OUT (&H25),A

 LD A,&H44 ;Send buffer data.

 OUT (&H27),A ; All devices on a I2C bus have their own address.

 LD C,&H18 ; just like the address bus in the MSX, peripherals

 CALL STAT ; can see for which one the data is meant.

 JP C,I2CERR ;In case of no acknowledge, exit

 XOR A ;Load audio register number in buffer (number 0)

 OUT (&H25),A

 LD A,&H44 ;Send buffer data

 OUT (&H27),A ; After the of the device address, the address of

 LD C,&H28 ; the register of the device to write to is send.

 CALL STAT

 JP C,I2CERR ;In case of no acknowledge, exit

 LD A,(HL) ;Load data for audio register 0 in buffer

 INC HL

 OUT (&H25),A

 LD A,&H44 ;Send buffer data

 OUT (&H27),A

 LD C,&H28

 CALL STAT

 JP C,I2CERR ;In case of no acknowledge, exit

 LD A,(HL) ;Load data for audio register 1 in buffer

 INC HL ; I2C devices are usually auto incrementing the register

 OUT (&H25),A ; number

 LD A,&H44

 OUT (&H27),A

 LD C,&H28

 CALL STAT

 JP C,I2CERR ;In case of no acknowledge, exit

 LD A,(HL) ;Load data for audio register 2 in buffer

 INC HL

 OUT (&H25),A

 LD A,&H44 ;Send buffer data

 OUT (&H27),A

 LD C,&H28

 CALL STAT

 JP C,I2CERR ;In case of no acknowledge, exit

16

 LD A,(HL) ;Load data for audio register 3 in buffer

 INC HL

 OUT (&H25),A

 LD A,&H44 ;Send buffer data

 OUT (&H27),A

 LD C,&H28

 CALL STAT

 JP C,I2CERR ;In case of no acknowledge, exit

 LD A,&H64 ;Generate (repeated) start condition

 OUT (&H27),A ; After reinitializing the bus, slave address

 LD C,&H10 ; and register must be send again. Now can we

 CALL STAT ; only send 2 bytes to reach register 8

 JP C,I2CERR ;In case of no acknowledge, exit

 LD A,&H82 ;Load audio chip’s slave address in buffer

 OUT (&H25),A

 LD A,&H44 ;Send buffer data

 OUT (&H27),A

 LD C,&H18

 CALL STAT

 JP C,I2CERR ;In case of no acknowledge, exit

 LD A,&H08 ;Load audio register number in buffer (number 8)

 OUT (&H25),A

 LD A,&H44 ;Send buffer data

 OUT (&H27),A

 LD C,&H28

 CALL STAT

 JP C,I2CERR ;In case of no acknowledge, exit

 LD A,(HL) ;Load data for audio register 8 in buffer

 INC HL

 OUT (&H25),A

 LD A,&H44 ;Send buffer data

 OUT (&H27),A

 LD C,&H28

 CALL STAT

 JP C,I2CERR ;In case of no acknowledge, exit

 LD A,&H54 ;Generate stop condition

 OUT (&H27),A ; Other I2C masters now know they can send their

 LD C,&HF8 ; data.

 CALL STAT

 JR C,I2CERR ;In case of any bus error, exit

 LD A,&H44

 OUT (&H27),A

 RET

STAT: LD B,0

STAL: IN A,(&H27)

 AND 8

 JR NZ,STAC

 DJNZ STAL

 SCF

 RET

STAC: IN A,(&H24)

 CP C

 JR Z,STAOK

 SCF

STAOK: RET

17

Balance

TDAINI: LD A,&H64

 OUT (&H27),A

 LD C,&H08

 CALL STAT

 JP C,I2CERR

 LD A,&H82

 OUT (&H25),A

 LD A,&H44

 OUT (&H27),A

 LD C,&H18

 CALL STAT

 JP C,I2CERR

 XOR A

 OUT (&H25),A

 LD A,&H44

 OUT (&H27),A

 LD C,&H28

 CALL STAT

 JP C,I2CERR

 LD E,(HL) ;Volume

 INC HL

 LD A,(HL) ;Balance

 PUSH HL

 CP 128

 JR C,BALL

 LD A,E

 JR NOBALL

BALL: SLA E ;Vol*2

 CALL MUL8 ;HL=A*E

 LD A,H ;A=HL/256

NOBALL: OUT (&H25),A

 LD A,&H44

 OUT (&H27),A

 LD C,&H28

 CALL STAT

 POP HL

 JP C,I2CERR

 DEC HL

 LD E,(HL) ;Volume

 INC HL

 LD A,(HL) ;Balance

 PUSH HL

 CPL

 CP 127

 JR C,BALR

 LD A,E

 JR NOBALR

BALR: SLA E ;Vol*2

 CALL MUL8 ;HL=A*E

 LD A,H ;A=HL/256

NOBALR: OUT (&H25),A

 LD A,&H44

 OUT (&H27),A

 LD C,&H28

 CALL STAT

 POP HL

 JP C,I2CERR

 INC HL

 LD A,(HL)

 INC HL

 OUT (&H25),A

 LD A,&H44

 OUT (&H27),A

 LD C,&H28

 CALL STAT

 JP C,I2CERR

 LD A,(HL)

18

 INC HL

 OUT (&H25),A

 LD A,&H44

 OUT (&H27),A

 LD C,&H28

 CALL STAT

 JP C,I2CERR

 LD A,&H64

 OUT (&H27),A

 LD C,&H10

 CALL STAT

 JP C,I2CERR

 LD A,&H82

 OUT (&H25),A

 LD A,&H44

 OUT (&H27),A

 LD C,&H18

 CALL STAT

 JP C,I2CERR

 LD A,&H08

 OUT (&H25),A

 LD A,&H44

 OUT (&H27),A

 LD C,&H28

 CALL STAT

 JP C,I2CERR

 LD A,(HL)

 INC HL

 OUT (&H25),A

 LD A,&H44

 OUT (&H27),A

 LD C,&H28

 CALL STAT

 JP C,I2CERR

 LD A,&H54

 OUT (&H27),A

 LD C,&HF8

 CALL STAT

 JR C,I2CERR

 RET

STAT: LD B,0

STAL: IN A,(&H27)

 AND 8

 JR NZ,STAC

 DJNZ STAL

 SCF

 RET

STAC: IN A,(&H24)

 CP C

 JR Z,STAOK

 SCF

STAOK: RET

19

Updating firmware

1 Generate a hardware reset by writing to I/O address &H21

2 Write to I/O address &H22:

 &HAA

 &H55

 &HAA

 Size of block to program, high byte

 Size of block to program, low byte

 Program data byte by byte

After each transmitted byte, the value read back on I/O &H22 will de incremented by

one when the cartridge is ready to receive a new byte. Bytes which are written when

the cartridge is not ready will be lost.

The FLASH consists of pages of 256 bytes, so after each 256 data bytes the AtMega

starts flashing one block. This takes more processing time than other bytes.

The data can be verified by reading back the program data as described in the next

chapter.

Reading program memory

1 Generate a hardware reset by writing to I/O address &H21

2 Write to I/O address &H22:

 &HAA

 &H55

 &H55

All data can be read sequentially at I/O address &H22.

20

Known issues

Hardware interrupt acknowledge does not work in R800 mode. The interrupt request

is also ended after a write to &H22, the interrupt service routine must take care of

that.

